E I Transformer Core Manufacturers in Mumbai India.

Sheets of suitable iron stamped out in shapes like the letters "E" and "I", are stacked with the "I" against the open end of the "E" to form a 3-legged structure. Coils can be wound around any leg, but usually the center leg is used. This type of core is much used for power transformers, autotransformers, and inductors.

Construction of an inductor using two ER cores,
a plastic bobbin and two clips.
The bobbin has pins to be soldered to a printed circuit board.
Exploded view of the previous figure showing the structure

Pair of "E" cores

Again used for iron cores. Similar to using an "E" and "I" together, a pair of "E" cores will accommodate a larger coil former and can produce a larger inductor or transformer. If an air gap is required, the centre leg of the "E" is shortened so that the air gap sits in the middle of the coil to minimise fringing and reduce electromagnetic interference.

a pot core of 'RM' type

Pot core

Usually ferrite or similar. This is used for inductors and transformers. The shape of a pot core is round with an internal hollow that almost completely encloses the coil. Usually a pot core is made in two halves which fit together around a coil former (bobbin). This design of core has a shielding effect, preventing radiation and reducing electromagnetic interference.

Toroidal core

This design is based on a toroid (the same shape as a doughnut). The coil is wound through the hole in the torus and around the outside. An ideal coil is distributed evenly all around the circumference of the torus. The symmetry of this geometry creates a magnetic field of circular loops inside the core, and the lack of sharp bends will constrain virtually all of the field to the core material. This not only makes a highly efficient transformer, but also reduces the electromagnetic interference radiated by the coil.
It is popular for applications where the desirable features are: high specific power per mass and volume, low mains hum, and minimal electromagnetic interference. One such application is the power supply for a hi-fi audio amplifier. The main drawback that limits their use for general purpose applications, is the inherent difficulty of winding wire through the center of a torus.
Unlike a split core (a core made of two elements, like a pair of E cores), specialized machinery is required for automated winding of a toroidal core. Toroids have less audible noise, such as mains hum, because the magnetic forces do not exert bending moment on the core. The core is only in compression or tension, and the circular shape is more stable mechanically.

A toroidal core

Ring or bead

The ring is essentially identical in shape and performance to the toroid, except that inductors commonly pass only through the center of the core, without wrapping around the core multiple times.
The ring core may also be composed of two separate C-shaped hemispheres secured together within a plastic shell, permitting it to be placed on finished cables with large connectors already installed, that would prevent threading the cable through the small inner diameter of a solid ring.

A ferrite ring on a computer data cable.

Planar core

A planar core consists of two flat pieces of magnetic material, one above and one below the coil. It is typically used with a flat coil that is part of a printed circuit board. This design is excellent for mass production and allows a high power, small volume transformer to be constructed for low cost. It is not as ideal as either a pot core or toroidal core but costs less to produce.

A planar 'E' core
 
A planar inductor
 
Exploded view that shows the spiral track made directly on the printed circuit board

Core loss

In a transformer or inductor, some of the power that would ideally be transferred through the device is lost in the core, resulting in heat and sometimes noise. There are various reasons for such losses, the primary ones being:

Hysteresis loss

When the magnetic field through the core changes, the magnetization of the core material changes by expansion and contraction of the tiny magnetic domains it is composed of, due to movement of the domain walls. This process causes losses, because the domain walls get "snagged" on defects in the crystal structure and then "snap" past them, dissipating energy as heat. This is called hysteresis loss. It can be seen in the graph of the B field versus the H field for the material, which has the form of a closed loop. The amount of energy lost in the material in one cycle of the applied field is proportional to the area inside the hysteresis loop. Hysteresis loss increases with higher frequencies as more cycles are undergone per unit time.

Eddy current loss

The induction of eddy currents within the core causes a resistive loss. The higher the resistance of the core material the lower the loss. Lamination of the core material can reduce eddy current loss, as can making the core of a nonconductive magnetic material, like ferrite.

Magnetic core materials

Having no magnetically active core material (an "air core") provides very low inductance in most situations, so a wide range of high-permeability materials are used to concentrate the field. Most high-permeability material are ferromagnetic or ferrimagnetic.

Soft iron

"Soft" iron is used in magnetic assemblies, electromagnets and in some electric motors; and it can create a concentrated field that is as much as 50,000 times more intense than an air core.
Iron is desirable to make magnetic cores, as it can withstand high levels of magnetic field without saturating (up to 2.16 teslas at ambient temperature.)
It is also used because, unlike "hard" iron, it does not remain magnetised when the field is removed, which is often important in applications where the magnetic field is required to be repeatedly switched.
Unfortunately, due to the electrical conductivity of the metal, at AC frequencies a bulk block or rod of soft iron can often suffer from large eddy currents circulating within it that waste energy and cause undesirable heating of the iron.

Laminated silicon steel

Main article: Silicon steel
Because iron is a relatively good conductor, it cannot be used in bulk form with a rapidly changing field, such as in a transformer, as intense eddy currents would appear due to the magnetic field, resulting in huge losses (this is used in induction heating).
Two techniques are commonly used together to increase the resistivity of iron: lamination and alloying of the iron with silicon.

Lamination

Laminated magnetic cores are made of thin, insulated iron sheets, lying, as much as possible, parallel with the lines of flux. Using this technique, the magnetic core is equivalent to many individual magnetic circuits, each one receiving only a small fraction of the magnetic flux (because their section is a fraction of the whole core section). Because eddy currents flow around lines of flux, the laminations prevent most of the eddy currents from flowing at all, restricting any flow to much smaller, thinner and thus higher resistance regions. From this, it can be seen that the thinner the laminations, the lower the eddy currents.

A ferrite ring on a computer data cable.

Silicon alloying

A small addition of silicon to iron (around 3%) results in a dramatic increase of the resistivity, up to four times higher[citation needed]. Further increase in silicon concentration impairs the steel's mechanical properties, causing difficulties for rolling due to brittleness.
Among the two types of silicon steel, grain-oriented (GO) and grain non-oriented (GNO), GO is most desirable for magnetic cores. It is anisotropic, offering better magnetic properties than GNO in one direction. As the magnetic field in inductor and transformer cores is static (compared to that in electric motors), it is possible to use GO steel in the preferred orientation.

Carbonyl iron

Main article: carbonyl iron
Powdered cores made of carbonyl iron, a highly pure iron, have high stability of parameters across a wide range of temperatures and magnetic flux levels, with excellent Q factors between 50 kHz and 200 MHz. Carbonyl iron powders are basically constituted of micrometer-size spheres of iron coated in a thin layer of electrical insulation. This is equivalent to a microscopic laminated magnetic circuit (see silicon steel, above), hence reducing the eddy currents, particularly at very high frequencies.
A popular application of carbonyl iron-based magnetic cores is in high-frequency and broadband inductors and transformers.

Iron powder

Powdered cores made of hydrogen reduced iron have higher permeability but lower Q. They are used mostly for electromagnetic interference filters and low-frequency chokes, mainly in switched-mode power supplies.

Ferrite

Main article: Ferrite (magnet)
Ferrite ceramics are used for high-frequency applications. The ferrite materials can be engineered with a wide range of parameters. As ceramics, they are essentially insulators, which prevents eddy currents, although losses such as hysteresis losses can still occur.

Vitreous Metal

Amorphous metal is a variety of alloys that are non-crystalline or glassy. These are being used to create high efficiency transformers. The materials can be highly responsive to magnetic fields for low hysteresis losses and they can also have lower conductivity to reduce eddy current losses. China is currently making wide spread industrial and power grid usage of these transformers for new installations.

Transformer refers to the static electromagnetic setting which can transfer power from one circuit to another one. In AC circuits, AC voltage, current and waveform can be transformed with the help of Transformers. Each transformation is usually to transfer from one circuit to another one by the way of electromagnetism, but it has no direct relation with this circuit. It also can be transformed through electromagnetism (electrical manner). This electromagnetism is known as auto-transformer.


Basics of E & I Transformers:

Transformer plays an important role in electronic equipment. AC and DC voltage in Power supply equipment are almost achieved by transformer’s transformation and commutation. At the same time the electrical parameters transformed by transformer are not one but a few ones.

Simple schematic diagram of the transformer is shown below. It is connected by closed-magnet (iron cores), two windings and AC power supply. The winding is called the primary winding; another winding is connected with load, and it is called secondary windings

No-load state of Transformer: viz. the disconnecting state between the secondary winding and load (Figure 1-2). Connect the primary winding and the power supply of AC voltageU1, and then it will produce alternating current I0, this current is called no-load currents. This current set up alternating magnetic flowf0 which is closed along iron core magnetic circuit. At the same time, it traverses the primary winding and secondary winding, and then produces inducting electromotive forceE2 (secondary no-load voltage).